EC_GROUP_set_curve_GFp(3ssl) - phpMan

Command: man perldoc info search(apropos)  


EC_GROUP_new(3)                              OpenSSL                              EC_GROUP_new(3)



NAME
       EC_GROUP_new, EC_GROUP_free, EC_GROUP_clear_free, EC_GROUP_new_curve_GFp,
       EC_GROUP_new_curve_GF2m, EC_GROUP_new_by_curve_name, EC_GROUP_set_curve_GFp,
       EC_GROUP_get_curve_GFp, EC_GROUP_set_curve_GF2m, EC_GROUP_get_curve_GF2m,
       EC_get_builtin_curves - Functions for creating and destroying EC_GROUP objects.

SYNOPSIS
        #include <openssl/ec.h>
        #include <openssl/bn.h>

        EC_GROUP *EC_GROUP_new(const EC_METHOD *meth);
        void EC_GROUP_free(EC_GROUP *group);
        void EC_GROUP_clear_free(EC_GROUP *group);

        EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
        EC_GROUP *EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
        EC_GROUP *EC_GROUP_new_by_curve_name(int nid);

        int EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
        int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
        int EC_GROUP_set_curve_GF2m(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
        int EC_GROUP_get_curve_GF2m(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

        size_t EC_get_builtin_curves(EC_builtin_curve *r, size_t nitems);

DESCRIPTION
       Within the library there are two forms of elliptic curve that are of interest. The first
       form is those defined over the prime field Fp. The elements of Fp are the integers 0 to
       p-1, where p is a prime number. This gives us a revised elliptic curve equation as
       follows:

       y^2 mod p = x^3 +ax + b mod p

       The second form is those defined over a binary field F2^m where the elements of the field
       are integers of length at most m bits. For this form the elliptic curve equation is
       modified to:

       y^2 + xy = x^3 + ax^2 + b (where b != 0)

       Operations in a binary field are performed relative to an irreducible polynomial. All such
       curves with OpenSSL use a trinomial or a pentanomial for this parameter.

       A new curve can be constructed by calling EC_GROUP_new, using the implementation provided
       by meth (see EC_GFp_simple_method(3)). It is then necessary to call either
       EC_GROUP_set_curve_GFp or EC_GROUP_set_curve_GF2m as appropriate to create a curve defined
       over Fp or over F2^m respectively.

       EC_GROUP_set_curve_GFp sets the curve parameters p, a and b for a curve over Fp stored in
       group.  EC_group_get_curve_GFp obtains the previously set curve parameters.

       EC_GROUP_set_curve_GF2m sets the equivalent curve parameters for a curve over F2^m. In
       this case p represents the irreducible polybnomial - each bit represents a term in the
       polynomial. Therefore there will either be three or five bits set dependant on whether the
       polynomial is a trinomial or a pentanomial.  EC_group_get_curve_GF2m obtains the
       previously set curve parameters.

       The functions EC_GROUP_new_curve_GFp and EC_GROUP_new_curve_GF2m are shortcuts for calling
       EC_GROUP_new and the appropriate EC_group_set_curve function. An appropriate default
       implementation method will be used.

       Whilst the library can be used to create any curve using the functions described above,
       there are also a number of predefined curves that are available. In order to obtain a list
       of all of the predefined curves, call the function EC_get_builtin_curves. The parameter r
       should be an array of EC_builtin_curve structures of size nitems. The function will
       populate the r array with information about the builtin curves. If nitems is less than the
       total number of curves available, then the first nitems curves will be returned. Otherwise
       the total number of curves will be provided. The return value is the total number of
       curves available (whether that number has been populated in r or not). Passing a NULL r,
       or setting nitems to 0 will do nothing other than return the total number of curves
       available.  The EC_builtin_curve structure is defined as follows:

        typedef struct {
               int nid;
               const char *comment;
               } EC_builtin_curve;

       Each EC_builtin_curve item has a unique integer id (nid), and a human readable comment
       string describing the curve.

       In order to construct a builtin curve use the function EC_GROUP_new_by_curve_name and
       provide the nid of the curve to be constructed.

       EC_GROUP_free frees the memory associated with the EC_GROUP.

       EC_GROUP_clear_free destroys any sensitive data held within the EC_GROUP and then frees
       its memory.

RETURN VALUES
       All EC_GROUP_new* functions return a pointer to the newly constructed group, or NULL on
       error.

       EC_get_builtin_curves returns the number of builtin curves that are available.

       EC_GROUP_set_curve_GFp, EC_GROUP_get_curve_GFp, EC_GROUP_set_curve_GF2m,
       EC_GROUP_get_curve_GF2m return 1 on success or 0 on error.

SEE ALSO
       crypto(3), ec(3), EC_GROUP_copy(3), EC_POINT_new(3), EC_POINT_add(3), EC_KEY_new(3),
       EC_GFp_simple_method(3), d2i_ECPKParameters(3)



1.0.2k                                      2017-01-26                            EC_GROUP_new(3)

Generated by $Id: phpMan.php,v 4.55 2007/09/05 04:42:51 chedong Exp $ Author: Che Dong
On Apache
Under GNU General Public License
2024-11-23 18:04 @18.188.113.189 CrawledBy Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)
Valid XHTML 1.0!Valid CSS!