Man Pages

pthreads(7) - phpMan pthreads(7) - phpMan

Command: man perldoc info search(apropos)  


PTHREADS(7)                Linux Programmer's Manual               PTHREADS(7)



NAME
       pthreads - POSIX threads

DESCRIPTION
       POSIX.1  specifies  a  set  of  interfaces (functions, header files) for threaded programming commonly known as
       POSIX threads, or Pthreads.  A single process can contain multiple threads, all of which are executing the same
       program.   These  threads  share  the  same global memory (data and heap segments), but each thread has its own
       stack (automatic variables).

       POSIX.1 also requires that threads share a range of other attributes (i.e., these attributes  are  process-wide
       rather than per-thread):

       -  process ID

       -  parent process ID

       -  process group ID and session ID

       -  controlling terminal

       -  user and group IDs

       -  open file descriptors

       -  record locks (see fcntl(2))

       -  signal dispositions

       -  file mode creation mask (umask(2))

       -  current directory (chdir(2)) and root directory (chroot(2))

       -  interval timers (setitimer(2)) and POSIX timers (timer_create(2))

       -  nice value (setpriority(2))

       -  resource limits (setrlimit(2))

       -  measurements of the consumption of CPU time (times(2)) and resources (getrusage(2))

       As well as the stack, POSIX.1 specifies that various other attributes are distinct for each thread, including:

       -  thread ID (the pthread_t data type)

       -  signal mask (pthread_sigmask(3))

       -  the errno variable

       -  alternate signal stack (sigaltstack(2))

       -  real-time scheduling policy and priority (sched_setscheduler(2) and sched_setparam(2))

       The following Linux-specific features are also per-thread:

       -  capabilities (see capabilities(7))

       -  CPU affinity (sched_setaffinity(2))

   Pthreads function return values
       Most  pthreads functions return 0 on success, and an error number of failure.  Note that the pthreads functions
       do not set errno.  For each of the pthreads functions that can return an error, POSIX.1-2001 specifies that the
       function can never fail with the error EINTR.

   Thread IDs
       Each  of  the threads in a process has a unique thread identifier (stored in the type pthread_t).  This identi-
       fier is returned to the caller of pthread_create(3), and a thread can obtain its own  thread  identifier  using
       pthread_self(3).   Thread  IDs  are  only  guaranteed to be unique within a process.  A thread ID may be reused
       after a terminated thread has been joined, or a detached thread has terminated.  In all pthreads functions that
       accept  a thread ID as an argument, that ID by definition refers to a thread in the same process as the caller.

   Thread-safe functions
       A thread-safe function is one that can be safely (i.e., it will deliver the same results regardless of  whether
       it is) called from multiple threads at the same time.

       POSIX.1-2001 and POSIX.1-2008 require that all functions specified in the standard shall be thread-safe, except
       for the following functions:

           asctime()
           basename()
           catgets()
           crypt()
           ctermid() if passed a non-NULL argument
           ctime()
           dbm_clearerr()
           dbm_close()
           dbm_delete()
           dbm_error()
           dbm_fetch()
           dbm_firstkey()
           dbm_nextkey()
           dbm_open()
           dbm_store()
           dirname()
           dlerror()
           drand48()
           ecvt() [POSIX.1-2001 only (function removed in POSIX.1-2008)]
           encrypt()
           endgrent()
           endpwent()
           endutxent()
           fcvt() [POSIX.1-2001 only (function removed in POSIX.1-2008)]
           ftw()
           gcvt() [POSIX.1-2001 only (function removed in POSIX.1-2008)]
           getc_unlocked()
           getchar_unlocked()
           getdate()
           getenv()
           getgrent()
           getgrgid()
           getgrnam()
           gethostbyaddr() [POSIX.1-2001 only (function removed in POSIX.1-2008)]
           gethostbyname() [POSIX.1-2001 only (function removed in POSIX.1-2008)]
           gethostent()
           getlogin()
           getnetbyaddr()
           getnetbyname()
           getnetent()
           getopt()
           getprotobyname()
           getprotobynumber()
           getprotoent()
           getpwent()
           getpwnam()
           getpwuid()
           getservbyname()
           getservbyport()
           getservent()
           getutxent()
           getutxid()
           getutxline()
           gmtime()
           hcreate()
           hdestroy()
           hsearch()
           inet_ntoa()
           l64a()
           lgamma()
           lgammaf()
           lgammal()
           localeconv()
           localtime()
           lrand48()
           mrand48()
           nftw()
           nl_langinfo()
           ptsname()
           putc_unlocked()
           putchar_unlocked()
           putenv()
           pututxline()
           rand()
           readdir()
           setenv()
           setgrent()
           setkey()
           setpwent()
           setutxent()
           strerror()
           strsignal() [Added in POSIX.1-2008]
           strtok()
           system() [Added in POSIX.1-2008]
           tmpnam() if passed a non-NULL argument
           ttyname()
           unsetenv()
           wcrtomb() if its final argument is NULL
           wcsrtombs() if its final argument is NULL
           wcstombs()
           wctomb()

   Cancellation Points
       POSIX.1 specifies that certain functions must, and certain other functions may, be cancellation points.   If  a
       thread is cancelable, its cancelability type is deferred, and a cancellation request is pending for the thread,
       then the thread is canceled when it calls a function that is a cancellation point.

       The following functions are required to be cancellation points by POSIX.1-2001 and/or POSIX.1-2008:

           accept()
           aio_suspend()
           clock_nanosleep()
           close()
           connect()
           creat()
           fcntl() F_SETLKW
           fdatasync()
           fsync()
           getmsg()
           getpmsg()
           lockf() F_LOCK
           mq_receive()
           mq_send()
           mq_timedreceive()
           mq_timedsend()
           msgrcv()
           msgsnd()
           msync()
           nanosleep()
           open()
           openat() [Added in POSIX.1-2008]
           pause()
           poll()
           pread()
           pselect()
           pthread_cond_timedwait()
           pthread_cond_wait()
           pthread_join()
           pthread_testcancel()
           putmsg()
           putpmsg()
           pwrite()
           read()
           readv()
           recv()
           recvfrom()
           recvmsg()
           select()
           sem_timedwait()
           sem_wait()
           send()
           sendmsg()
           sendto()
           sigpause() [POSIX.1-2001 only (moves to "may" list in POSIX.1-2008)]
           sigsuspend()
           sigtimedwait()
           sigwait()
           sigwaitinfo()
           sleep()
           system()
           tcdrain()
           usleep() [POSIX.1-2001 only (function removed in POSIX.1-2008)]
           wait()
           waitid()
           waitpid()
           write()
           writev()

       The following functions may be cancellation points according to POSIX.1-2001 and/or POSIX.1-2008:

           access()
           asctime()
           asctime_r()
           catclose()
           catgets()
           catopen()
           chmod() [Added in POSIX.1-2008]
           chown() [Added in POSIX.1-2008]
           closedir()
           closelog()
           ctermid()
           ctime()
           ctime_r()
           dbm_close()
           dbm_delete()
           dbm_fetch()
           dbm_nextkey()
           dbm_open()
           dbm_store()
           dlclose()
           dlopen()
           dprintf() [Added in POSIX.1-2008]
           endgrent()
           endhostent()
           endnetent()
           endprotoent()
           endpwent()
           endservent()
           endutxent()
           faccessat() [Added in POSIX.1-2008]
           fchmod() [Added in POSIX.1-2008]
           fchmodat() [Added in POSIX.1-2008]
           fchown() [Added in POSIX.1-2008]
           fchownat() [Added in POSIX.1-2008]
           fclose()
           fcntl() (for any value of cmd argument)
           fflush()
           fgetc()
           fgetpos()
           fgets()
           fgetwc()
           fgetws()
           fmtmsg()
           fopen()
           fpathconf()
           fprintf()
           fputc()
           fputs()
           fputwc()
           fputws()
           fread()
           freopen()
           fscanf()
           fseek()
           fseeko()
           fsetpos()
           fstat()
           fstatat() [Added in POSIX.1-2008]
           ftell()
           ftello()
           ftw()
           futimens() [Added in POSIX.1-2008]
           fwprintf()
           fwrite()
           fwscanf()
           getaddrinfo()
           getc()
           getc_unlocked()
           getchar()
           getchar_unlocked()
           getcwd()
           getdate()
           getdelim() [Added in POSIX.1-2008]
           getgrent()
           getgrgid()
           getgrgid_r()
           getgrnam()
           getgrnam_r()
           gethostbyaddr() [SUSv3 only (function removed in POSIX.1-2008)]
           gethostbyname() [SUSv3 only (function removed in POSIX.1-2008)]
           gethostent()
           gethostid()
           gethostname()
           getline() [Added in POSIX.1-2008]
           getlogin()
           getlogin_r()
           getnameinfo()
           getnetbyaddr()
           getnetbyname()
           getnetent()
           getopt() (if opterr is non-zero)
           getprotobyname()
           getprotobynumber()
           getprotoent()
           getpwent()
           getpwnam()
           getpwnam_r()
           getpwuid()
           getpwuid_r()
           gets()
           getservbyname()
           getservbyport()
           getservent()
           getutxent()
           getutxid()
           getutxline()
           getwc()
           getwchar()
           getwd() [SUSv3 only (function removed in POSIX.1-2008)]
           glob()
           iconv_close()
           iconv_open()
           ioctl()
           link()
           linkat() [Added in POSIX.1-2008]
           lio_listio() [Added in POSIX.1-2008]
           localtime()
           localtime_r()
           lockf() [Added in POSIX.1-2008]
           lseek()
           lstat()
           mkdir() [Added in POSIX.1-2008]
           mkdirat() [Added in POSIX.1-2008]
           mkdtemp() [Added in POSIX.1-2008]
           mkfifo() [Added in POSIX.1-2008]
           mkfifoat() [Added in POSIX.1-2008]
           mknod() [Added in POSIX.1-2008]
           mknodat() [Added in POSIX.1-2008]
           mkstemp()
           mktime()
           nftw()
           opendir()
           openlog()
           pathconf()
           pclose()
           perror()
           popen()
           posix_fadvise()
           posix_fallocate()
           posix_madvise()
           posix_openpt()
           posix_spawn()
           posix_spawnp()
           posix_trace_clear()
           posix_trace_close()
           posix_trace_create()
           posix_trace_create_withlog()
           posix_trace_eventtypelist_getnext_id()
           posix_trace_eventtypelist_rewind()
           posix_trace_flush()
           posix_trace_get_attr()
           posix_trace_get_filter()
           posix_trace_get_status()
           posix_trace_getnext_event()
           posix_trace_open()
           posix_trace_rewind()
           posix_trace_set_filter()
           posix_trace_shutdown()
           posix_trace_timedgetnext_event()
           posix_typed_mem_open()
           printf()
           psiginfo() [Added in POSIX.1-2008]
           psignal() [Added in POSIX.1-2008]
           pthread_rwlock_rdlock()
           pthread_rwlock_timedrdlock()
           pthread_rwlock_timedwrlock()
           pthread_rwlock_wrlock()
           putc()
           putc_unlocked()
           putchar()
           putchar_unlocked()
           puts()
           pututxline()
           putwc()
           putwchar()
           readdir()
           readdir_r()
           readlink() [Added in POSIX.1-2008]
           readlinkat() [Added in POSIX.1-2008]
           remove()
           rename()
           renameat() [Added in POSIX.1-2008]
           rewind()
           rewinddir()
           scandir() [Added in POSIX.1-2008]
           scanf()
           seekdir()
           semop()
           setgrent()
           sethostent()
           setnetent()
           setprotoent()
           setpwent()
           setservent()
           setutxent()
           sigpause() [Added in POSIX.1-2008]
           stat()
           strerror()
           strerror_r()
           strftime()
           symlink()
           symlinkat() [Added in POSIX.1-2008]
           sync()
           syslog()
           tmpfile()
           tmpnam()
           ttyname()
           ttyname_r()
           tzset()
           ungetc()
           ungetwc()
           unlink()
           unlinkat() [Added in POSIX.1-2008]
           utime() [Added in POSIX.1-2008]
           utimensat() [Added in POSIX.1-2008]
           utimes() [Added in POSIX.1-2008]
           vdprintf() [Added in POSIX.1-2008]
           vfprintf()
           vfwprintf()
           vprintf()
           vwprintf()
           wcsftime()
           wordexp()
           wprintf()
           wscanf()

       An implementation may also mark other functions not specified in the standard as cancellation points.  In  par-
       ticular,  an implementation is likely to mark any non-standard function that may block as a cancellation point.
       (This includes most functions that can touch files.)

   Compiling on Linux
       On Linux, programs that use the Pthreads API should be compiled using cc -pthread.

   Linux Implementations of POSIX Threads
       Over time, two threading implementations have been provided by the GNU C library on Linux:

       LinuxThreads
              This is the original Pthreads implementation.  Since glibc 2.4, this implementation is  no  longer  sup-
              ported.

       NPTL (Native POSIX Threads Library)
              This  is the modern Pthreads implementation.  By comparison with LinuxThreads, NPTL provides closer con-
              formance to the requirements of the POSIX.1 specification and better  performance  when  creating  large
              numbers  of threads.  NPTL is available since glibc 2.3.2, and requires features that are present in the
              Linux 2.6 kernel.

       Both of these are so-called 1:1 implementations, meaning that each thread maps to a kernel  scheduling  entity.
       Both  threading  implementations employ the Linux clone(2) system call.  In NPTL, thread synchronization primi-
       tives (mutexes, thread joining, etc.) are implemented using the Linux futex(2) system call.

   LinuxThreads
       The notable features of this implementation are the following:

       -  In addition to the main (initial) thread, and the threads that the program creates using  pthread_create(3),
          the implementation creates a "manager" thread.  This thread handles thread creation and termination.  (Prob-
          lems can result if this thread is inadvertently killed.)

       -  Signals are used internally by the implementation.  On Linux 2.2 and later, the first three  real-time  sig-
          nals  are  used  (see  also signal(7)).  On older Linux kernels, SIGUSR1 and SIGUSR2 are used.  Applications
          must avoid the use of whichever set of signals is employed by the implementation.

       -  Threads do not share process IDs.  (In effect, LinuxThreads threads are implemented as processes which share
          more  information  than usual, but which do not share a common process ID.)  LinuxThreads threads (including
          the manager thread) are visible as separate processes using ps(1).

       The LinuxThreads implementation deviates from the POSIX.1 specification in a number of ways, including the fol-
       lowing:

       -  Calls to getpid(2) return a different value in each thread.

       -  Calls  to  getppid(2)  in  threads  other  than the main thread return the process ID of the manager thread;
          instead getppid(2) in these threads should return the same value as getppid(2) in the main thread.

       -  When one thread creates a new child process using fork(2), any thread should  be  able  to  wait(2)  on  the
          child.  However, the implementation only allows the thread that created the child to wait(2) on it.

       -  When  a  thread  calls  execve(2),  all other threads are terminated (as required by POSIX.1).  However, the
          resulting process has the same PID as the thread that called execve(2): it should have the same PID  as  the
          main thread.

       -  Threads  do  not  share  user and group IDs.  This can cause complications with set-user-ID programs and can
          cause failures in Pthreads functions if an application changes its credentials using seteuid(2) or  similar.

       -  Threads do not share a common session ID and process group ID.

       -  Threads do not share record locks created using fcntl(2).

       -  The information returned by times(2) and getrusage(2) is per-thread rather than process-wide.

       -  Threads do not share semaphore undo values (see semop(2)).

       -  Threads do not share interval timers.

       -  Threads do not share a common nice value.

       -  POSIX.1  distinguishes  the  notions of signals that are directed to the process as a whole and signals that
          are directed to individual threads.  According to POSIX.1, a process-directed signal  (sent  using  kill(2),
          for  example)  should  be handled by a single, arbitrarily selected thread within the process.  LinuxThreads
          does not support the notion of process-directed signals: signals may only be sent to specific threads.

       -  Threads have distinct alternate signal stack settings.  However, a new thread's alternate signal stack  set-
          tings  are  copied  from the thread that created it, so that the threads initially share an alternate signal
          stack.  (A new thread should start with no alternate signal stack defined.  If two threads handle signals on
          their shared alternate signal stack at the same time, unpredictable program failures are likely to occur.)

   NPTL
       With  NPTL, all of the threads in a process are placed in the same thread group; all members of a thread groups
       share the same PID.  NPTL does not employ a manager thread.  NPTL makes internal use of the first two real-time
       signals (see also signal(7)); these signals cannot be used in applications.

       NPTL still has at least one non-conformance with POSIX.1:

       -  Threads do not share a common nice value.

       Some NPTL non-conformances only occur with older kernels:

       -  The  information returned by times(2) and getrusage(2) is per-thread rather than process-wide (fixed in ker-
          nel 2.6.9).

       -  Threads do not share resource limits (fixed in kernel 2.6.10).

       -  Threads do not share interval timers (fixed in kernel 2.6.12).

       -  Only the main thread is permitted to start a new session using setsid(2) (fixed in kernel 2.6.16).

       -  Only the main thread is permitted to make the process into a process group leader using setpgid(2) (fixed in
          kernel 2.6.16).

       -  Threads  have distinct alternate signal stack settings.  However, a new thread's alternate signal stack set-
          tings are copied from the thread that created it, so that the threads initially share  an  alternate  signal
          stack (fixed in kernel 2.6.16).

       Note the following further points about the NPTL implementation:

       -  If  the  stack  size  soft  resource limit (see the description of RLIMIT_STACK in setrlimit(2)) is set to a
          value other than unlimited, then this value defines the default stack size for new threads.   To  be  effec-
          tive, this limit must be set before the program is executed, perhaps using the ulimit -s shell built-in com-
          mand (limit stacksize in the C shell).

   Determining the Threading Implementation
       Since glibc 2.3.2, the getconf(1) command can be used to determine the system's threading  implementation,  for
       example:

           bash$ getconf GNU_LIBPTHREAD_VERSION
           NPTL 2.3.4

       With  older  glibc  versions,  a  command  such  as the following should be sufficient to determine the default
       threading implementation:

           bash$ $( ldd /bin/ls | grep libc.so | awk '{print $3}' ) | \
                           egrep -i 'threads|nptl'
                   Native POSIX Threads Library by Ulrich Drepper et al

   Selecting the Threading Implementation: LD_ASSUME_KERNEL
       On systems with a glibc that supports both LinuxThreads and NPTL  (i.e.,  glibc  2.3.x),  the  LD_ASSUME_KERNEL
       environment  variable  can be used to override the dynamic linker's default choice of threading implementation.
       This variable tells the dynamic linker to assume that it is running on top of a particular kernel version.   By
       specifying  a kernel version that does not provide the support required by NPTL, we can force the use of Linux-
       Threads.  (The most likely reason for doing this is to run a (broken) application that depends on some non-con-
       formant behavior in LinuxThreads.)  For example:

           bash$ $( LD_ASSUME_KERNEL=2.2.5 ldd /bin/ls | grep libc.so | \
                           awk '{print $3}' ) | egrep -i 'threads|ntpl'
                   linuxthreads-0.10 by Xavier Leroy

SEE ALSO
       clone(2), futex(2), gettid(2), proc(5), futex(7), signal(7),
       and  various  Pthreads  manual  pages, for example: pthread_attr_init(3), pthread_atfork(3), pthread_cancel(3),
       pthread_cleanup_push(3), pthread_cond_signal(3),  pthread_cond_wait(3),  pthread_create(3),  pthread_detach(3),
       pthread_equal(3),     pthread_exit(3),     pthread_key_create(3),    pthread_kill(3),    pthread_mutex_lock(3),
       pthread_mutex_unlock(3), pthread_once(3), pthread_setcancelstate(3), pthread_setcanceltype(3),  pthread_setspe-
       cific(3), pthread_sigmask(3), and pthread_testcancel(3)

COLOPHON
       This  page  is part of release 3.22 of the Linux man-pages project.  A description of the project, and informa-
       tion about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.



Linux                             2008-11-18                       PTHREADS(7)