Man Pages

perf-record(1) - phpMan perf-record(1) - phpMan

Command: man perldoc info search(apropos)  

PERF-RECORD(1)                    perf Manual                   PERF-RECORD(1)

       perf-record - Run a command and record its profile into

       perf record [-e <EVENT> | --event=EVENT] [-l] [-a] <command>
       perf record [-e <EVENT> | --event=EVENT] [-l] [-a] -- <command> [<options>]

       This command runs a command and gathers a performance counter profile from it, into - without
       displaying anything.

       This file can then be inspected later on, using perf report.

           Any command you can specify in a shell.

       -e, --event=
           Select the PMU event. Selection can be:

           ?   a symbolic event name (use perf list to list all events)

           ?   a raw PMU event (eventsel+umask) in the form of rNNN where NNN is a hexadecimal event descriptor.

           ?   a hardware breakpoint event in the form of \mem:addr[:access] where addr is the address in memory you
               want to break in. Access is the memory access type (read, write, execute) it can be passed as follows:
               \mem:addr[:[r][w][x]]. If you want to profile read-write accesses in 0x1000, just set mem:0x1000:rw.

           Event filter.

       -a, --all-cpus
           System-wide collection from all CPUs.

           Scale counter values.

       -p, --pid=
           Record events on existing process ID (comma separated list).

       -t, --tid=
           Record events on existing thread ID (comma separated list).

       -u, --uid=
           Record events in threads owned by uid. Name or number.

       -r, --realtime=
           Collect data with this RT SCHED_FIFO priority.

       -D, --no-delay
           Collect data without buffering.

       -c, --count=
           Event period to sample.

       -o, --output=
           Output file name.

       -i, --no-inherit
           Child tasks do not inherit counters.

       -F, --freq=
           Profile at this frequency.

       -m, --mmap-pages=
           Number of mmap data pages. Must be a power of two.

           Enables call-graph (stack chain/backtrace) recording.

           Setup and enable call-graph (stack chain/backtrace) recording, implies -g.

               Allows specifying "fp" (frame pointer) or "dwarf"
               (DWARF?s CFI - Call Frame Information) as the method to collect
               the information used to show the call graphs.

               In some systems, where binaries are build with gcc
               --fomit-frame-pointer, using the "fp" method will produce bogus
               call graphs, using "dwarf", if available (perf tools linked to
               the libunwind library) should be used instead.

       -q, --quiet
           Don't print any message, useful for scripting.

       -v, --verbose
           Be more verbose (show counter open errors, etc).

       -s, --stat
           Per thread counts.

       -d, --data
           Sample addresses.

       -T, --timestamp
           Sample timestamps. Use it with perf report -D to see the timestamps, for instance.

       -n, --no-samples
           Don't sample.

       -R, --raw-samples
           Collect raw sample records from all opened counters (default for tracepoint counters).

       -C, --cpu
           Collect samples only on the list of CPUs provided. Multiple CPUs can be provided as a comma-separated list
           with no space: 0,1. Ranges of CPUs are specified with -: 0-2. In per-thread mode with inheritance mode on
           (default), samples are captured only when the thread executes on the designated CPUs. Default is to monitor
           all CPUs.

       -N, --no-buildid-cache
           Do not update the builid cache. This saves some overhead in situations where the information in the
  file (which includes buildids) is sufficient.

       -G name,..., --cgroup name,...
           monitor only in the container (cgroup) called "name". This option is available only in per-cpu mode. The
           cgroup filesystem must be mounted. All threads belonging to container "name" are monitored when they run on
           the monitored CPUs. Multiple cgroups can be provided. Each cgroup is applied to the corresponding event,
           i.e., first cgroup to first event, second cgroup to second event and so on. It is possible to provide an
           empty cgroup (monitor all the time) using, e.g., -G foo,,bar. Cgroups must have corresponding events, i.e.,
           they always refer to events defined earlier on the command line.

       -b, --branch-any
           Enable taken branch stack sampling. Any type of taken branch may be sampled. This is a shortcut for
           --branch-filter any. See --branch-filter for more infos.

       -j, --branch-filter
           Enable taken branch stack sampling. Each sample captures a series of consecutive taken branches. The number
           of branches captured with each sample depends on the underlying hardware, the type of branches of interest,
           and the executed code. It is possible to select the types of branches captured by enabling filters. The
           following filters are defined:

           ?   any: any type of branches

           ?   any_call: any function call or system call

           ?   any_ret: any function return or system call return

           ?   ind_call: any indirect branch

           ?   u: only when the branch target is at the user level

           ?   k: only when the branch target is in the kernel

           ?   hv: only when the target is at the hypervisor level
               The option requires at least one branch type among any, any_call, any_ret, ind_call. The privilege
               levels may be omitted, in which case, the privilege levels of the associated event are applied to the
               branch filter. Both kernel (k) and hypervisor (hv) privilege levels are subject to permissions. When
               sampling on multiple events, branch stack sampling is enabled for all the sampling events. The sampled
               branch type is the same for all events. The various filters must be specified as a comma separated
               list: --branch-filter any_ret,u,k Note that this feature may not be available on all processors.

           -W, --weight
               Enable weightened sampling. An additional weight is recorded per sample and can be displayed with the
               weight and local_weight sort keys. This currently works for TSX abort events and some memory events in
               precise mode on modern Intel CPUs.

       perf-stat(1), perf-list(1)

perf                              06/22/2017                    PERF-RECORD(1)